Definitions and key facts for section 3.2

Fact: The determinant and row operations
Let A be a square matrix.

1. If a multiple of one row of A is added to another row to product a matrix B, then $\operatorname{det} B=\operatorname{det} A$.
2. If two rows of A are interchanged to produce B, then $\operatorname{det} b=-\operatorname{det} A$.
3. If one row of A is multiplied by k to produce B, then $\operatorname{det} B=k \cdot \operatorname{det} A$.

If A is reduced to an echelon form U using only row replacment and row interchange operations, then

$$
\operatorname{det} A= \begin{cases}(-1)^{r} \cdot(\text { product of pivots in } U) & \text { when } A \text { is invertible } \\ 0 & \text { when } A \text { is not invertible }\end{cases}
$$

From this we obtain one more item in the invertible matrix theorem.
Fact: A square matrix A is invertible if and only if $\operatorname{det} A \neq 0$.

Fact: Further properties of the determinant
Let A and B be $n \times n$ matrices, then

1. $\operatorname{det} A^{T}=\operatorname{det} A$, and
2. $\operatorname{det} A B=(\operatorname{det} A)(\operatorname{det} B)$
